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Abstract

Multiple linear regression is used to model the effects of violating statistical assumptions

on the likelihood of making a Type I error. This procedure is illustrated for the student's t-

test (for independent groups), using data from previous Monte Carlo studies in which the

actual alpha levels associated with violations of the normality assumption, homogeneity of

variance, and/or unbalanced designs were determined. The observed Type I error rates

were recorded, along with information coding the type and extent of statistical assumption

violation. The resulting linear models had an R2 values of .88 to .91 and adjusted R2 values

of .87 to .90. The results of the suggested methodological approach: (a) reveal the

feasibility of developing multiple linear regression models to predict actual Type I error

rates based on various assumption violation conditions for the independent groups t-test;

(b) suggest that alpha inflation is rarely larger than a factor of 2; and (c) provide a

template for the development of assumption violation models for other types of statistical

tests.
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Development of a Regression Model for Estimating the Effects of Assumption Violations

on Type I Error Rates in the Student's t-Test: Implications for Practitioners

In spite of the development of a large number of non-parametric alternatives, much

educational and psychological research currently relies heavily on a small number of

parametric statistical procedures such as t-tests, analysis of variance (ANOVA) and

correlation and regression analyses. Typically, when researchers learn to apply these

techniques they also learn a set of underlying statistical assumptions that must be met

before use of the statistical test is justified. These include assumptions such as the

normality of the distribution of the dependent variable, the assumed homogeneity of error

variances, and homoskedasticity, as well as other types of assumptions such as the

independence of observations or linearity of relationships. Violating such assumptions is

known to result in biased parameter estimates and incorrect probability values, although in

many real-life situations the assumptions may be closely approximated (Hays, 1994;

Maxwell & Delaney, 2000) and there is a historical tradition in many disciplines of relying

on normal-theory-based statistics (Huberty, 1987).

However, our own accumulated experiences with academics, other professionals

who use statistics, and graduate students, suggest to us that many researchers either: (a)

fail to test distributional assumptions altogether, so do not even realize the possibility that

their chosen analysis will be in error; (b) realize that their data violate assumptions but use

default analytic options which assume no violations anyway, believing that the

consequences are negligible; or (c) acknowledge the need to correct forviolated

assumptions, but choose not to do so because of perceived practical roadblocks (e.g., lack

of access to the proper statistical correction or beliefs that the hassles of dealing with

reviewers and readers unfamiliar with the technique outweigh its advantages).

Given this state of affairs, one wonders how much confidence can be placed in the

body of empirically-based knowledge that has accumulated on many research topics. If at
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least some degree of violation is present in many of our studies, how confident can we be

in the conclusions based on our empirical results? In some types of applications, a meta-

analysis of the relevant content studies, with its focus on estimation of effect sizes, may

help to address this question. However, in some other situations (especially applied

situations where the issue being addressed is very context-specific), there may be

insufficient studies available for meta-analysis, or a need to make a decision based on a

single isolated study. A key concern in such situations might simply be whether or not the

Type I error rate has been substantially inflated by the violation of assumptions, thus

resulting in an unacceptable likelihood of concluding that an effect exists, when in fact it

does not. In other words, we might find it very helpful to have information that allows us

to decide whether the alpha level in such a study should be taken at face value.

The current paper represents our initial attempts to demonstrate a technique that

has the potential to estimate (for given statistical analysis in the context of a single study)

the likely effects on the Type I error rate of a given constellation of assumption violations.

More specifically, linear regression is used to model effects of systematically varying the

type and degree of assumption violations on Type I error rates, using simulation studies

with known population and sampling conditions as data sources for the regressionmodels.

The linear regression model incorporates both the main effects of violating such

assumptions as normality and homogeneity of variance, as well as the interactive effects of

multiple violations. Once such a model is carefully developed, it can then be used to

estimate the likely extent of bias in Type I error rate for a specific given set ofassumption

violations.

This approach is applied to the case of the robustness of the independent groups

student t-test (see Harwell, Rubinstein, Hayes, & Olds, 1992 for a similar application to

one- and two-factor fixed effects ANOVA). One factor considered in our investigation is

whether the homogeneity of variance assumption is violated, along with additional
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information about whether or not the experimental design is balanced. Previous work has

established that violations of homogeneity of variance have less serious consequences for

alpha when the sample sizes of the two groups are equal, but may be quite pronounced

when heterogeneity accompanies unbalanced sample sizes (e.g., Boneau, 1960; Glass,

Peckham, & Sanders, 1972; Norton, 1952; Scheffe, 1959; Young & Veldman, 1963). The

specific implication for alpha depends upon the pattern of sample size and variance

inequality when the smaller sample n is associated with the larger population variance (i.e.,

an inverse relationship), alpha is inflated; when the smaller sample n is associated with the

smaller population variance (i.e., a direct relationship), the actual alpha may be

substantially lower than the nominal significance level (Glass et al., 1972).

In addition, the normality assumption is considered. Skewness and kurtosis will

affect the actual alpha level (Pearson, 1931; Scheffe, 1959), and the effects of skewness

may be more pronounced when the two samples are drawn from populations which are

skewed in opposite directions (Tiku, 1964). However, violations of the normality

assumption tend to have a smaller effect than heterogeneity, especially when sample sizes

are moderately large to large. Also considered is the effect of having extreme outliers

present in the distribution.

In sum, the data used as input to the regression model are from a meta-analytic

review of the results of several previously-published Monte Carlo studiesmany of which

were undertaken to demonstrate the biasing effects on the t-test of failing to use the

appropriate statistical correction and to contrast the uncorrected t-test results with some

preferred alternative analysis! However, our emphasis is different than that of the original

investigators in these studies. In addition to providing a demonstration of a more general

technique, we hope to use the data to establish some rough boundary conditions that will

help practitioners both in evaluating their confidence in previous research using t-tests,

and guide them in their choice of current data analytic technique. For example, our results
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might allow practitioners to make judgments about when the likely effects of violating

assumptions justify costs associated with using specialized corrections (e.g., extra time,

effort, and loss of easy interpretability and communication) and when the likely effects of

violating assumptions will only minimally affect the outcomes and interpretations.

Methodology

Definition of problem. The approach taken was very similar to that recommended

by Cooper (1982) and Harwell (1992). We first defined the specific research question that

we wished to address. The student's t-test for independent groups was chosen because the

use of this test depends upon three statistical assumptions common to many parametric

statistical techniques, yet there are a limited number of variations on the basic

experimental design for the t-test, thus simplifying the task of providing an illustration.

The three relevant statistical assumptions are: (a) the normality of the underlying

population distributions from which each group was sampled; (b) equal variances in the

two population distributions; and (c) independence of observations. In this illustration, we

chose to focus on the first two assumptions, but note that it has been demonstrated that

violations of the independence assumption clearly may bias the results of an ANOVA, and

by extension, the results of an independent groups t-test (e.g., Kenny & Judd, 1986).

Identification of studies. Accessible studies which reported Monte Carlo

simulation data relevant to the research question were identified. These were studies in

which: (a) the focal analyses involved the comparison of two independent group means,

and the statistical tests used for the analyses included student's t-tests or a two-groups

fixed-effects ANOVA; (b) at least some of the samples were non-normal, had

heterogeneous variances, and/or unequal sample sizes; and (c) Type I error rates were

reported. In all cases, the data sets appeared to have been generated using random

sampling, and the independence assumption was not violated. In most of the studies, the

data sets were generated with a population mean difference (delta) of zero.
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The search yielded a total of nine data sources which reported the observed and

nominal alphas, sample size, form of the population distributions, and variance

homogeneity/heterogeneity in sufficient detail: Boneau (1960); Levine and Dunlap (1982);

MacDonald (1999); Myers and Well (1995); Rasmussen (1985); Rasmussen (1986);

Schneider and Penfield (1997); Zimmerman (1987); and Zimmerman and Zumbo (1992).

Together, these studies resulted in a total of 231 "cases", in which each case was based

upon from 1,000 to 10,000 simulated data sets (i.e., replications). The studies are further

described in Table 1. Also, we found but did not include the data from three studies (Hsu,

1938; Pratt, 1964; Scheffe, 1959) which reported an additional 18 cases. These cases

differed from the Monte Carlo simulation data because they consisted of exact

mathematical results for specific heterogeneity conditions. They did, however, provide

information about the general pattern of results that we should expect from our regression

analysis.

Insert Table 1 about here

As can be seen from the values describing the type and extent of normality

violation presented in Table 1, several of the simulation studies probed what happens to

alpha when assumption violations are quite extreme. In part, this likely reflects a desire to

determine the upper and lower boundaries of the discrepancy between nominal and actual

levels of alpha. Furthermore, the simulation studies that we drew upon were typically

performed to demonstrate the superiority of some alternative to the t-testthe

performance of the alternatives was generally highlighted best under conditions of extreme

assumption violation. For example, the variance ratios used in the simulationsranged from

1:36 (Schneider & Penfiled, 1997) to 100:1 (Myers & Well, 1995), and the normality

violations used in some studies were quite severe (e.g., kurtosis values that were
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below-1, skew values of 6 or above). On the other hand, the sample size ratios used in

the studies were typically much more realistic in the sense of being likely to occur an

actual data collection situation, although we note that the sample sizes and total N's might

well be considered small for typical research studies in some topic areas. This issue

potentially had some implications for our regression estimates, and as will be described in

more detail shortly, resulted in a decision to restrict ouranalysis to those simulation cases

in which the violations were within a range at least somewhat consistent with naturally-

occurring conditions. We also return to this issue with a recommendation in our

conclusions.

Accumulation and coding of results. Each of the previously-described studies was

carefully inspected in order to identify and code at minimum the following information for

each set of relevant simulations.

1. A variance ratio, which was defined as the variance of Population 1 divided by the

variance of Population 2. This variable was designated VARRATIO. The

homogeneity assumption is met when the variance ratio has a value of 1.

2. A sample size ratio, defined as the sample size selected from Population 1 divided

by the sample size selected from Population 2. This variable was labeled

SAMRATIO. Values were coded such that the Population 1 sample size was

always equal to, or larger than, Population 2 sample size, and if necessary, the

reported variance ratio described above was reflected to maintain a consistent

ordering.

3. The total sample size (combined group sizes) was called TOTSAM.

4. Violations of the normality assumption were coded in multiple ways. First, two

variables were created, one for each population, and information about the specific

form of each population was recorded. The options noted were: normal, mixed
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normal, exponential, rectangular (uniform), lognormal, chi-square, and various

specific values of skew/kurtosis.

5. A set of four dummy-coded variables was created in which a value of "1" was

assigned if the populations were: exponential (EXPO), rectangular (RECT),

lognormal (LOGNORM), or mixed normal (MIXED), and a value of zero was

assigned if not. In the few studies in which exact values of skew and kurtosis were

reported, dummy codes were assigned so that case was treated as an example of

the most representative form of distribution listed above. Cases drawn from a

normal distribution were thus coded "0000" on this set of dummy variables.

6. Normality violation was also captured in a very simple manner with a dummy-

coded variable which either had a value of "1" (both population distributions were

normal) or "0"(at least one population distribution was non-normal). This variable

was labeled BOTHNORMAL.

7. Distinctions between the nominal Type I error rate in the case were captured with

three dummy-coded variables named ALPHA01, ALPHA05, and ALPHA10. Note

that for purposes of the regression analysis, only two of these variables were used

in a given modelthe third would only provide redundant information.

8. The dependent variable in the regression model was the observed Type I error rate

(across all samples in the relevant simulation). This variable was called ACTUAL,

to indicate that it represented the actual alpha level across samples with a given

type and degree of assumption violation.

In addition, a number of interaction terms were created, consisting of the following:

1. Two-way interaction effects:

a. SAMVAR: an interaction between the ratio of the sample sizes

(SAMRATIO) and the ratio of the population variances (VARRATIO).
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b. SAMTOT: an interaction between the ratio of the sample sizes

(SAMRATIO) and the total sample size (TOTSAM).

c. VARTOT: between the ratio of the population variances and sample sizes

(SAMRATIO) and the total sample size (TOTSAM).

2. The three-way interaction effect among the ratio of the sample sizes

(SAMRATIO), the ratio of the population variances (VARRATIO), and the total

sample size (TOTSAM) was labeled (SAVATOT).

Thus the initial regression model that we tested was constructed as follows (McNeil,

Newman, & Kelly, 1996):

ACTUAL = ao + bl(ALPHA01) + b2(ALPHAl 0) +

b3(MIXED) + b4(LOGNORM) + b6(EXPO) + b6(RECT) +

b7(VARRATIO)+138(TOTSAM) + b9(SAMRATIO) +

bio(VARTOT) +bii(SAMTOT) + b12(SAMVAR) +

b13(SAVATOT) + e

where, an, and bi through b13 represent the estimated intercept and slope parameters,

respectively.

Results

The model displayed above was first tested using the data on the 231 MC

simulation cases. For this and other regression analyses, each analysis was performed

twice, using both an ordinary least squares (OLS) and a weighted least squares (WLS)

estimation procedure. In the WLS estimation, the number of replications per case was

used as the weighting factor.

Our initial results showed that cases with very extreme variance ratios tended to

emerge as outliers in the regression analysis, and they also seemed unrepresentative of the

real life situations in which most research would be conducted. Thus we decided to further

restrict the sample to those cases in which the variance ratio was between .05 and 20 (i.e.,
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ratio in which the largest to smallest sample sizes had a variance ratios ranging from 1:20

to 20:1). This decision had the effect of eliminating all 54 cases from the Schneider and

Penfield (1997) study, as well as a few cases from other studies. In addition, during

analysis six extreme outlier values were identified. This data screening resulted in a

useable sample of N=158 cases. Finally, the parameter estimates for the total sample size

variable, along with all of its interactions were low magnitude and not statistically

significant. Furthermore, their presence did not seem to affect other parameter estimates

appreciably. Therefore these variables were trimmed from the final model.

The results produced by the OLS and WLS analyses of the trimmed multiple linear

regression model are listed in Tables 2 and 3, respectively. The R2 values of .877 for the

OLS model, and .907 for the WLS model, were statistically significant at the .001 level.

(The adjusted R2 values for these two models were .870 and .902, respectively.) An

inspection of the coefficients and their accompanying significance tests for both models

leads to parallel conclusions for eight of the nine predictor variables. First, and not

surprisingly, the nominal alpha level (which drives the choice of the criterion value for t

used to determine statistical significance), as reflected in the two dummy codes ALPHAO1

and ALPHAIO, showed a significant relationship (p < .001) to the observed alpha under

both estimation techniques. If this relationship had not held, we would have suspected a

horribly misspecified model or some egregious coding errors! The parameter estimates

indicate that when nominal alpha was .01, the value of observed alpha was lowered by

approximately .03, and when it was .10, the observed alpha was increased by

approximately .05.

Insert Tables 2 and 3 about here
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Second, three of the four dummy variables coding for normality violations showed

parallel results in the two estimations. Studies in which at least one of the samples was

drawn from either a mixed normal or a log-normal distribution showed a significant

deflation of alpha by about .01. And, both estimation methods suggested that the

rectangular distributions studied did not show a significant effect on the observed alpha.

However, the OLS estimation suggested that the exponential distributions did not have a

significant effect on observed alpha, while the WLS results suggested that they did

(v.004), and the parameter estimates for the regression coefficient differed by an order of

magnitude (.01 versus .001) for the two estimation methods.

Finally, the effects of sample size and variance heterogeneity were similar across

the two estimation methods. They showed significant positive coefficients for the main

effects of sample size ratio and variance ratio, and a significant negative coefficient for the

interaction of the sample size and variance ratios (all p < .001). This result was consistent

with previous research which suggests that the observed alpha is deflated when smaller

sample sizes are associated with smaller variances.

As previously mentioned, the purpose of constructing and analyzing such a model

was to produce estimated regression coefficients that practitioners could use to estimate

the actual alpha level for an independent groups t-test conducted in their study. Thus, we

also considered whether our models were likely to yield defensible estimates of observed

alpha. For example, one would expect that the prediction for a situation in which the

nominal alpha was .05, the populations distributions are both normal, sample sizes are

equal, and variances are homogeneous, that the regression model would return an

estimated observed alpha of .05. Both of our models perform relatively well on this task,

with a predicted value of .049 for the OLS estimation and a predicted values of .047 for

the WLS estimation.
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To illustrate a more complex situation, assume that the following sample and

population characteristics existed in a study in which an independent groups t-test was

conducted: (a) the sample size ratio was 2.0, (b) the variance ratio was .5, (c) the

distributions of both populations were assumed to be mixed normal, and (d) the nominal

alpha level was .05. Under these conditions, the estimated regression coefficients and

values of the predictor variables are as follows:

1. OLS coefficient values:

prediction of observed alpha = .0413 -.0136(MDCED=1) +

.0073(SAMRATIO=2) + .0052(VARRATIO=.5) -

.0048(SAMVAR=1) = 0401

2. WLS coefficient values:

prediction of observed alpha = .0371 -.0154(MIXED=1) +

.0096(SAMRATIO=2) + .0053(VARRATIO=.5) -

.0046(SAMVAR=1) = 03S9

These two estimated actual alpha values suggest that for this particular situation, the

actual alpha value is not likely to exceed the nominal alpha value, nor is it so deflated that

power might become a serious concern. Even when there is more pronounced

heterogeneity of variance combined with unequal sample sizes, the observed value of alpha

may be influenced less than one would suspect, given warnings to avoid the t-test under

these situations. For example, consider a case where both population distributions are

normal, but the sample sizes are quite discrepant with a ratio of 10:1 and the variances are

also quite discrepant with a ratio of 1:10. The OLS and WLS models in this situation

would predict an observed alpha of .11 (OLS) or .13 (WLS). Although alpha is clearly

inflated in this situation, the researcher may yet find rejecting the null hypothesis poses an

acceptable level of risk.
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Conclusions and .Implications

Much good statistical research has gone into demonstrating how violations of

assumptions can produce misleading results, and into the development of specialized

procedures that can be applied to correct estimates and probability levels when violations

occur. However, if the focus of the analysis is correct decision-making with respect to

retaining or rejecting the null hypothesis, then one might ask if these specialized

procedures are always necessary? The answer to this question depends in part upon

several factors. First, how serious do the violations tend to be? For example, if normality

violations are common, are we typically considering the effects of a slight violation of

normality, or drastically non-normal distributions? Second, are the effects of these

violations likely to inflate or deflate probability values? Finally, although an ideal

preference would be to use the appropriate statistical procedure to correct for a given

violation of an assumption, how much of an adjustment is typically required to maintain

the nominal alpha? It is a procedure to address this third question that the current paper

investigates.

Our regression results suggest that the independent groups t-test is fairly robust. If

this doesn't find this generality acceptable, then a more precise estimate of the risk of an

inflated alpha can be made, if violations of assumptions can be determined. Results could

then be presented and interpreted in light of this estimate of the actual alpha level.

However, a few caveats are in order. First, this analysis has considered the effects

of violating assumptions on the Type I error rate only. It may be equally or more

important in a given context to determine the extent to which statistical power (e.g., the

chances of avoiding a Type II error) is compromised. We suggest that the same general

technique that we have presented here could be used to address this question also, by

simply cumulating the results from Monte Carlo studies which have determined the effects

of assumption violations on power. An important consideration in the development of a
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predictive model for effects on power would be some information on the effect size of a

true difference between the group means.

Another issue that bears further investigation is the issue of gaining sufficient

information about the values of the predictors in the regression models. For example, our

coding for the normality violations was fairly crude. A better scheme would employ more

precise information about the population values of skew and kurtosis. Unfortunately, this

detailed information was not available for all of the studies in our sample. This could result

in more precise parameter estimates for the regression models.

The development of such predictive models also suggests a possible function for

future simulation studies, which might be conducted specifically for the purpose of

systematically generating cases for a regression analysis. We note, for example, that when

the purpose of the Monte Carlo simulations was to generate examples of the superiority of

alternatives to the t-test, researchers quite rightly looked at unusual but interesting

situations involving extreme combinations of non-normality, unbalanced sample sizes and

heterogeneity of variance. However, we wonder if for our purposes we would be well-

served by simulations generating many intermediate values of cases that were mildly non-

normal, unbalanced, and/or heterogeneous.

Finally, we presented the results of both OLS and WLS estimation procedures,

motivated in part by the work of Harwell (1992, Harwell et al., 1992). The weighting

employed in the WLS analysis made sense to the extent that it more heavily weighted

simulation results that depended upon a greater number of replications other things

being equal-- one might expect that such results would be more accurate. However, in

another sense the weighted analysis could be misleadingone would also want the

weights to reflect the extent to which the attendant violation assumption was frequent or

infrequent in the relevant population of studies. Again, the creation of a set of Monte
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Carlo simulations which takes this latter consideration into account might lead to a more

representative data set, which in turn generates more accurate regression coefficients.

In sum, we have taken an initial step towards developing a statistical tool that

researchers may find useful in practice, when they must balance the costs and benefits of

relying on a statistical test that may be more familiar and understood, and easier to

perform, but also known to result in inflated or deflated Type I errors when one cannot

meet all of the underlying statistical assumptions. We suggest that in many situations, the

Hest will prove adequately robust to error violations.

17
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Assumption Violation 23

Table 2

Multiple Linear Regression Model (OLS) Results for Simulation Cases, Outliers Removed
(N=158), All Levels of Nominal Alpha

Variables Coefficient SE

Constant .0413 .003 13.83 <.001

ALPHAO1 -.0344 .002 -16.30 <.001

ALPHA10 .0485 .003 18.53 <.001

MIXED -.0136 .003 -5.42 <.001

LOGNORM -.0119 .004 -3.16 .002

EXPO -.0015 .003 -0.50 .616

RECT .0055 .003 1.60 .112

SAMRATIO .0073 .001 5.19 <.001

VARRATIO .0052 .001 6.60 <.001

SAMVAR -.0048 .001 -8.42 <.001

Note. Model 1: R2 = .877, adj. R2= .870, F(9,148) = 117.384, p<.001.
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Table 3

Multiple Linear Regression Model (WLS) Results for Simulation Cases, Outliers Removed
(N =158), All Levels of Nominal Alpha

Variables Coefficient SE

Constant .0371 .003 12.30 <.001

ALPHAO1 -.0335 .003 -13.20 <.001

ALPHA10 .0507 .002 22.20 <.001

MIXED -.0154 .002 -6.47 <.001

LOGNORM -.0114 .003 -4.05 <.001

EXPO -.0100 .003 -2.96 .004

RECT .0089 .007 1.28 .202

SAMRATIO .0096 .001 6.75 <.001

VARRATIO .0053 .001 6.31 <.001

SAMVAR -.0046 <.001 -9.53 <.001

Note. Model 1: R2 = .907, adj. R2 = .902, F(9,148) = 101.784, p<.001.
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